Approximation hardness of dominating set problems in bounded degree graphs

نویسندگان

  • Miroslav Chlebík
  • Janka Chlebíková
چکیده

We study approximation hardness of the Minimum Dominating Set problem and its variants in undirected and directed graphs. Using a similar result obtained by Trevisan for Minimum Set Cover we prove the first explicit approximation lower bounds for various kinds of domination problems (connected, total, independent) in bounded degree graphs. Asymptotically, for degree bound approaching infinity, these bounds almost match the known upper bounds. The results are applied to improve the lower bounds for other related problems such as Maximum Induced Matching and Maximum Leaf Spanning Tree.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity and approximation ratio of semitotal domination in graphs

A set $S subseteq V(G)$ is a semitotal dominating set of a graph $G$ if it is a dominating set of $G$ andevery vertex in $S$ is within distance 2 of another vertex of $S$. Thesemitotal domination number $gamma_{t2}(G)$ is the minimumcardinality of a semitotal dominating set of $G$.We show that the semitotal domination problem isAPX-complete for bounded-degree graphs, and the semitotal dominatio...

متن کامل

Approximation hardness of edge dominating set problems

We provide the first interesting explicit lower bounds on efficient approximability for two closely related optimization problems in graphs, Minimum Edge Dominating Set and Minimum Maximal Matching. We show that it is NP-hard to approximate the solution of both problems to within any constant factor smaller than 7 6 . The result extends with negligible loss to bounded degree graphs and to every...

متن کامل

Approximation Hardness of Minimum Edge Dominating Set and Minimum Maximal Matching

We provide the first interesting explicit lower bounds on efficient approximability for two closely related optimization problems in graphs, Minimum Edge Dominating Set and Minimum Maximal Matching. We show that it is NP-hard to approximate the solution of both problems to within any constant factor smaller than 7 6 . The result extends with negligible loss to bounded degree graphs and to every...

متن کامل

On the Hardness and Inapproximability of Optimization Problems on Power Law Graphs

The discovery of power law distribution in degree sequence (i.e. the number of vertices with degree i is proportional to i−β for some constant β) of many large-scale real networks creates a belief that it may be easier to solve many optimization problems in such networks. Our works focus on the hardness and inapproximability of optimization problems on power law graphs (PLG). In this paper, we ...

متن کامل

Hardness of Approximating Problems on Cubic Graphs

Four fundamental graph problems, Minimum vertex cover, Maximum independent set, Minimum dominating set and Maximum cut, are shown to be APX-complete even for cubic graphs. This means that unless P=NP these problems do not admit any polynomial time approximation scheme on input graphs of degree bounded by three.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Comput.

دوره 206  شماره 

صفحات  -

تاریخ انتشار 2008